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1. INTRODUCTION 

IN THE binary film analyses of Brouwers [I, 21, the presence 
and the magnitude of a saturated region in the film were 
determined. For both superheated and wtUr&d regions 
energy and diffusion equations were derived and solved. 
A major assumption of these analyses was that only one 
superheated and one saturated region were allowed to occur, 
which was not proved for Le, < I. Accordingly, in this tech- 
nical note the fog film model is first recapitulated. Sub- 
sequently, it will be examined whether multiple superheated 
and saturated regions in the film are possible and if the 
aforementioned assumption is correct. 

2. THE FILM WITH A SINGLE 
SATURATED REGION 

A lilm is considered in which heat and diffusional mass 
transfer occur from bulk to wall, ch > c, and t, > I,. as found 
in a condenser. When superheat in the entire film is assumed. 
the temperature and vapour mass fraction profiles follow 
from the energy and diffusion equation using as boundary 
conditions t(~ = (5,) = lb, c(r = 6,) = c,,, r(y = 0) = I, and 
c(.r = 0) = c, (see Fig. I). Eliminating J from the resulting 
t(y) and c(y) yields the following relation between (’ and I in 
the superheated film [I): 

6, = d, : c = G(I) = I 

6, > 6, I 
<.=G(r)=l+(c,-1) “-? 

( [I,- r, 

! (1, s t < /I,) 
c is not a function of / for 6, < 1’ < ii,. (1) 
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bulk 

FIG. I The stagnant film. 

This monotonically increasing function in I is concave for 
Lc, > I. convex for Le, <: I and straight for Lc, = I [I]. For 
mass transfer from bulk to wall. possible supersaturation in 
the film is examined with the following slope condition [I. 21: 

In case equation (I) is not satisfied, the curve G(r) is situated 
entirely in the superheated region, and fog will not be formed. 
On the other hand, if this requirement is satisfied, the curve 
G(t) intersects the saturation line F(t). Assuming no super- 
saturation to be possible, fog will then be formed in part ot 
in the entire film. 

The next step is then to distinguish a superheated and 
saturated region in the film. The temperature and vapour 
mass fraction at the boundary of both regions (at j’ = li ,) are 
referred to as I,, and car respectively (see Fig. 2). 

The vapour mass fraction in the saturated region up to 
and including the boundary with the superheated region is 
related to the temperature by the saturation condition 

(’ = F(r) (I, < / < t.,j. (3) 

In the superheated region c and t are again related by equa- 
tion (I). but 1, and c, have now been replaced by t., and c,,. 
respectively 

(’ = G(I) 
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NOMENCLATURE 

vapour mass fraction 
diffusion coefficient [m* s- ‘1 
saturation vapour mass fraction 
relation between c and t in superheated 
region 
fog condition function, see 
equation (8) 
condition function for multiple 
saturated regions, see equation (14) 
fog formation per unit volume 
[kg mm3 s-‘1 
modified Lewis number, klpc,,, ii3 
temperature [“Cl 
coordinate normal to the interface (or wall) 

[ml. 

Greek symbol 
6 film thickness [ml. 

Subscripts 
a boundary of saturated and superheated region 

a,1 boundary of saturated and intermediate 
superheated region 

a,2 boundary of saturated and intermediate 
superheated region 

b bulk 
C diffusional 
i interface, wall 
K = 0 pertaining to zero fog formation per unit 

volume 
t thermal. 

of multiple regions (in the next section), but it offers the 
advantage that the computational effort is reduced (see refs. 

]I> 21). 
At the boundary of the saturated and superheated regions 

the vapour fraction and temperature (and physical prop- 
erties) are continuous, as are the energy and mass flux. This 

results in 

and 

dF dG 

dt ,d dt 

F(r,) = G(r,)(=c,) (5) 

.(~Le”~(exp(~*n(~))-*)). 
(6) 

Equations (5) and (6) prescribe the gradient-continuity of c 
and t in the film. As long as the left-hand side of equation 
(6) is larger than the right-hand side, the sought fa will be 
larger. In this way the t, (and c, = F(Q) can be determined 
iteratively. Additional information about the use and the 
features of the slope condition (2) and the tangency condition 
(6) is given in ref. [l]. 

In refs. [l, 21 it was furthermore demonstrated that in the 
saturated region the fog formation per unit volume reads 

(k-1) 
K=pD t7) 
This expression follows from combining the energy and 
diffusion equation in the fogging region. For Le, < 1 it is 
conceivable that K becomes zero or even negative, thus fog 
formation ends. Mathematically fog formation in the film 
ends when the numerator of equation (7) becomes zero (or 
negative) 

Le, 4 H(r) = 

where the fog condition function H(r) has been introduced. 
In refs. [l, 21 it has been demonstrated that 0 < F(r) ,< 1 and 
0 < H(r) < 1, and that both F(r) and H(r) (and their first 
derivatives with respect to r) are monotonically increasing 
functions in r. Furthermore, for a mixture of air and water 
vapour at atmospheric pressure F(r) and H(r) have actually 
been computed and depicted. 

As said, for Le, < 1 it is possible that K = 0, the pertaining 
temperature being denoted by rKzO (thus Le, = H(rKzO)). In 

Appendix B of ref. [I] it was assessed that the saturated region 
never attains this temperature; t,=, > 1,. Hence K > 0 is 
guaranteed in the saturated part of the film (see Fig. 2). 
Moreover, this insight was sustained by some performed 
computations concerning wall-condensing water vapour in 
air. 

The main features of the fog film model have been sum- 
marized. So far, the analysis has excluded the presence of 
multiple superheated and saturated regions in the film. How- 
ever, in Appendix B of ref. [l] it was explained that this could 
be possible for Le, -C I as G(r) is then a convex curve (likewise 
F(t)). In the next section such multiple regions are examined. 

3. MULTIPLE SUPERHEATED AND 
SATURATED REGIONS 

Assume there is a second superheated region, 6,,, Q y Q 
6 a,2r situated in the saturated region 0 < y < 6,, whereby 
0 < 6,, < a,,, < 6, (see Fig. 2). At the boundaries of this 
intermediate superheated region, r attains the values r,, , and 

t,, z1 and c the values c,, , and c,,~. In this superheated region 
t(y) and c(y) can be determined and y eliminated, yielding 
as a relation in this region 

c = G(r) 

= l+(ca,,-l)(~(exp(&ln(~))-l)+lr 

(la., < r < I,.~). (9) 

Both at y = 6,, and y = aa,* the gradient-continuity con- 
ditions (5) and (6) have to be fulfilled. Applying equations 
(5) (6) and (9) at y = 6,, yields 

dF 

dt ‘,< I’ 

At y = ai1,r these equations yield 

Combining equations (10) and (11) yields the following 
condition : 
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Fu;. 2. Relation between c and t in the film (,P eliminated), Lc, < 1, 8, = S, and condensation conditions 

This equation is rewritten as the foli~)wing relation among 
I .I. 1. (,t.: and L-e, 

QL. I . fA = Lc, (13) 

where Mr,,,, I.,.~) foIlows from equations (12) and (I 3) 

It can readily beconcluded that i(r,S ,. in, :) < I since both F(t) 
and dF/dt are n~onotoni~lly increasing functions in t and 
r,.? > r,, , . This would be expected since an extra superheated 
region is possible only for convex G(r), implying Le, 
(= I(t,, ,, ta,J) < I. I(t,, ,, f,.,) is a monotonically decreasing 
function in both I,., and rd.?. which is demonstrated in the 
following. 

The tirst derivative of i( I,, $, 1, J with respect to t,>,: follows 
from differentiating equation (14) and substituting equation 

(12) 

The sign of this first derivative is governed by the ilurne~t~~r 
of the second factor since the first factor and denominator 
of the second factor are both definitely positive. Reminding 
ourselves that K S- 0 (or Le, > H(t)) for r, ,< I < t,,. one can 
see that this nume~tor is smaller than zero (WC also equation 
(7)). Hence 

An analogous consideration of the first derivative of 
i(r, ,. r,,.?} with respect to I~,. ( reveals 

This can also be explained with equation (14); this function 
remains the same when t,, , and t, 2 are exchanged. Equations 
(16) and (17) imply that I(r,.,. (, J increases with de- 
creasing t,, , and t,,:. Consequently, I(?,, 1. +) is greatest when 
both t.,,, and f;,.2 attain their minimum value, that is I,. 

This maximum magnitude follows from equation (14). 
T’Hopital’s rule (as both the numerator and denominator 
tend to zero) and equation (8) 

lint f(t,, ,. I,, I) ‘.- N(i, ). (IX) 
1,. / -I., ! 
‘.,I I’, 

We have already discussed that for the considered region 
I, < t < t,, it holds that H(t) < Lr,, The fact that I(&.,. &) < 
H(t,) implies that 1(1; ,.,, f,,!) < Lc, for t, 4 f,, , < t,,,-. 6 I,,. In 
other words, there exist no f,, , and ia.? that can satisfy equa- 
tion (13) and enable another superheated region in the film. 
Accordingly, multiple superheated and saturated regions are 
indeed not possible. 

In this section only condensation cases have been 
discussed. For evaporation, or f, 2 I$,,, 2 t,,z 2 t, 2 lb, it can 
be derived that 1(/,,,, .,.? f ) is a monotonicaliy increasing 
function in both I~_, and 18,,2. Consequently, the maximum 

[(t., I. t;, ?f is agam found at t;, , = I,.- = t,. resultmg in 
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4. CONCLUSION 
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INTRODUCTION 

FOR MANY years now classical film model correction factors 
have been successfully used to predict the effect of mass 
transfer towards a wall on transport phenomena, such as 
exerted friction and heat and mass transferred. The cor- 
rection factors can be derived from a stagnant film analysis 
and applied to systems using either an imposed (trans- 
piration) mass flux or a diffusional vapour flux (by con- 
densation or evaporation). Recent reviews of the film model 
are found in Bannwart [1], Bannwart and Bontemps [2], 
Brouwers and Chesters [3] and Brouwers [4]. Whereas the 
former two authors extended the model to include the effect 
of mass transfer on film thickness, the latter investigators 
added fog formation to the model. 

The film model expressions have been applied to forced 
convective heat flow in the presence of an imposed mass flux 
by Mickley et al. [S] and Wang and Tu [6]. Colburn and 
Drew [7] and Webb and Sardesai [8], among others, fruitfully 
applied the film model to forced convective diffusional mass 
transfer. Heat transfer of forced pure vapour flow with wall 
condensation has been treated with the film model by 
Mizushina et al. [9]. 

With respect to free convective flow with mass transfer, 
the film model has been utilized only by Corradini [lo] and 
Vernier and Solignac [11] in an attempt to model the pos- 
tulated loss-of-coolant accident in a nuclear reactor. Tur- 
bulent free convective flow of wall condensing water vapour 
in air was considered, but poor agreement was found with 
the experiments performed. Until now, however, the film 
model predictions have never been applied to free convective 
flow problems with imposed wall transpiration. For example, 
fluid injection is an effective way of cooling and reducing 
heat transfer to surfaces in extremely hot surroundings. 

Hence, in this technical note the classical film model is 
applied to free convective heat transfer with an imposed mass 
flux. Subsequently, the predictions are compared with the 
theoretical results of previous investigators. These results are 
based on an analysis of the governing equations of laminar 

t Present address : Department of Civil Engineering, 
Twente University, P.O. Box 217, 7500 AE Enschede, The 
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free convective boundary layer flow over a permeable vertical 
plate with wall transpiration. In this paper the comparison is 
restricted to laminar free convection because, to the author’s 
knowledge, data on turbulent free convective flow with wall 
suction or injection are not yet available. 

FILM MODEL 

According to film theory the actual local Nusselt number, 
denoted by Nu,, in the presence of mass transfer follows 
from multiplying the zero suction (or neutral) Nusselt 
number, Nu.:, by a correction factor 

NM, = O,.s,mN~~. (1) 

The thermal correction factor, commonly referred to as 
Ackermann correction, follows from Brouwers [4]-among 
others-as 

where the dimensionless mass flux towards the wall reads 

In this equation h: represents the local heat transfer 
coefficient in the case of zero mass transfer. For free con- 
vective heat transfer it is defined as 

Nu:k 
h: = ~ 

x 

where x is a coordinate along the plate. For free convection 
over an isothermal impermeable vertical plate by thermal 
buoyancy the local neutral Nusselt number (see Ostrach [ 121) 
reads 

In Table 1 values of $ are listed for various Prandtl numbers, 
taken from ref. [12]. In the next section the film model pre- 
dictions are extensilely’compared with the results of previous 
investigators. 


